Hankel Matrix Rank Minimization with Applications to System Identification and Realization
نویسندگان
چکیده
We introduce a flexible optimization framework for nuclear norm minimization of matrices with linear structure, including Hankel, Toeplitz and moment structures, and catalog applications from diverse fields under this framework. We discuss various first-order methods for solving the resulting optimization problem, including alternating direction methods of multipliers, proximal point algorithms and gradient projection methods. We perform computational experiments to compare these methods on system identification problem and system realization problem. For the system identification problem, the gradient projection method (accelerated by Nesterov’s extrapolation techniques) and the proximal point algorithm usually outperform other first-order methods in terms of CPU time on both real and simulated data, for small and large regularization parameters respectively; while for the system realization problem, the alternating direction method of multipliers, as applied to a certain primal reformulation, usually outperforms other first-order methods in terms of CPU time. We also study the convergence of the proximal alternating directions methods of multipliers used in this paper.
منابع مشابه
System Identification via CUR-factored Hankel Approximation
Subspace-based system identification for dynamical systems is a sound, system-theoretic way to obtain linear, time-invariant system models from data. The interplay of data and systems theory is reflected in the Hankel matrix, a block-structured matrix whose factorization is necessary for system identification. For systems with many inputs, many outputs, or large timeseries of system-response da...
متن کاملStructured low-rank approximation and its applications
Fitting data by a bounded complexity linear model is equivalent to low-rank approximation of a matrix constructed from the data. The data matrix being Hankel structured is equivalent to the existence of a linear timeinvariant system that fits the data and the rank constraint is related to a bound on the model complexity. In the special case of fitting by a static model, the data matrix and its ...
متن کاملRecent process on structured low-rank approximation
Rank deficiency of a data matrix is equivalent to the existence of an exact linear model for the data. For the purpose of linear static modeling, the matrix is unstructured and the corresponding modeling problem is an approximation of the matrix by another matrix of a lower rank. In the context of linear time-invariant dynamic models, the appropriate data matrix is Hankel and the corresponding ...
متن کاملRecent progress in structured low-rank approximation
Rank deficiency of a data matrix is equivalent to the existence of an exact linear model for the data. For the purpose of linear static modeling, the matrix is unstructured and the correspondingmodeling problem is an approximation of the matrix by another matrix of a lower rank. In the context of linear time-invariant dynamic models, the appropriate data matrix is Hankel and the corresponding m...
متن کاملRecent progress on variable projection methods for structured low-rank approximation
Rank deficiency of a data matrix is equivalent to the existence of an exact linear model for the data. For the purpose of linear static modeling, the matrix is unstructured and the corresponding modeling problem is an approximation of the matrix by another matrix of a lower rank. In the context of linear time-invariant dynamic models, the appropriate data matrix is Hankel and the corresponding ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 34 شماره
صفحات -
تاریخ انتشار 2013